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A simplified fixed-point perturbation theory: I. The method 
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Institute of Nuclear Physics, Czechoslovak Academy of Sciences, 250 68 Rei, 
Czechoslovakia 

Received 3 March 1986, in final form 11 June 1986 

Abstract. For a simple potential, we propose a conversion of the standard differential 
radial Schrodinger equation into an infinite-dimensional matrix equation Ap = 0 and 
describe its systematic non-numerical solution. The results may be characterised as infinite 
asymptotic expansions of the wavefunctions (o and/or of the secular determinant (an 
inverse 'Green function') det A. The inverse model-space dimension plays a role of the 
small perturbation parameter. 

1. Introduction 

Recently, a straightforward diagonalisation of complicated Hamiltonians (say, by 
means of the Lanczos (1950) method) appeared even in the field-theoretical calculations 
on the lattice (e.g. Duncan and Roskies 1985). A methodical essence of these calcula- 
tions seems to lie in a consequent use of the algebraic non-numerically specified matrix 
elements of H. This resembles similar assumptions of the so-called fixed point perturba- 
tion theory (FPPT) (Znojil 1984a) and is also an inspiration of the present development 
of the FPPT approach to the matrix Schrodinger equations 

H$ = E$. (1.1) 

Methodically, FPFT may be understood as a generalisation and modification of the 
original Lanczos method. We assume that H is a matrix with ( 2 t  + 1) diagonals, t 3 1, 
and notice that (1.1) may be converted into its finite 'effective' equivalent 

He'$ = E$ (1.2) 

(Feshbach 1958). Here, in full analogy with an iterative (numerical) or continued- 
fractional (analytic) form of He' in the Lanczos algorithm (cf, e.g., Wilkinson (1965) 
or Akhiezer (1965), respectively), the ( t  x [)-dimensional matrix continued fractions 
(MCF) may be defined and used (Graffi and Grecchi 1975). Finally, with a fixed 
model-space dimension M < a, we have to replace the MCF part of He' by an asymptotic 
Fpm-series (cf also Znojil 1983). Its 'small parameter' is some quantity K = ( l /M)constant.  
In  practice, the eigenvalue/eigenvector FPPT condition (1.2) is to be solved numerically 
of course. 

A geometric background of the MCF FPPT formalism leads to the tedious immediate 
has been stimulated by a detailed study of the central applications. Their improvement 
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(Znojil 1984b) and 

V( r )  = a,’ + br4 b>O ( 1 . 4 )  

(Znojil and Tater 1986). This has inspired a formal transition to the so-called vectorial 
continued fractions (Znojil 1983) and resulted in an alternative diff erence-equation 
formulation of the whole FPPT construction (Znojil 1984c, Znojil et a1 1985). In  the 
present paper, its simplified purely algebraic version will be described. 

For the sake of simplicity, we shall start from a simple particular example again 
(see 0 2 below). This will enable us to illustrate the separate steps of the FPPT 

construction of He‘ in full detail: a change of variables (0 2.1) ,  a conversion of the 
differential Schrodinger equation into its band-matrix or difference-equation equivalent 

m+r 

m = 0, 1 ,  . . . ( 1 . 5 )  

(0 2.2) ,  an explicit algebraic construction of the wavefunctions (§  3 )  and, finally, a 
reconstruction of a numerically soluble equation of the type (1 .2)  ( 0  4 ) .  

2. Wavefunctions 

2.1. Schrodinger equation and a change of variables 

The radial Schrodinger equation 

1 = 0, 1 ,  . . . c > o  b<O 

with a negative energy E = - k’ describes a particle in a central shallow potential well. 
In spite of its simplicity, it does not seem to admit a closed solution. Hence, it is a 
good candidate for the present FPPT analysis. We shall employ it as a methodical 
example, which is to be generalised in paper I1 of the present series (Znojil 1987). 

The Hamiltonian in ( 2 . 1 )  contains the continuous spectrum. Via a simple change 
of variables 

( 2 . 2 )  L = 2 1 + ’ - ’  5 r = x 2 / 2 k  + ( r )  = x”’,y(x) 2 - 2 9 2 ,  * .  * 

we shall get rid of it. Indeed, assuming that k > 0 ,  we obtain a new form of ( 2 . 1 ) :  

where A = - 4 b / c  > 0, 7 = 2 k / & >  0 and 

is the harmonic oscillator Hamiltonian, H,In) = ( 4 n  + 2 L +  3)ln) .  
Formally, equation ( 2 . 3 )  may again be understood as a zero-energy Schrodinger 

equation with a harmonic oscillator unperturbed part of the Hamiltonian. Since 
x ( x )  - xL+’  if and only if $ ( r )  - r‘+’,  the new wavefunctions will again be regular in 
the origin whenever L+ 1 > - L  and 1 + 1 > -1,  i.e. for 1 > -4 and/or L > -f. Similarly, 



SimpliJied jxed-point perturbation theory: I 909 

in accord with the oscillation theorems (Ince 1956), the general (unphysical) 
asymptotics $ ( r )  - rtexp kr, r >> 1 and ~ ( x )  - *exp f x 2 ,  x >> 1 ,  will also become physical 
(change sign and remain proportional to exp(-kr))  precisely at the ‘physical’ values 
of the coupling/energy parameters. This establishes an equivalence between the k > 0 
problem (2.1) and a slightly modified form 

[ ( X ’ + E ) H ~ ( X ~ - E ) - A X ’ ] ( P ( X ) = O  (2.4) 

of (2.3) with E = iv and cp(x) = (x2 - iq ) - ’x (x ) .  

2.2. Recurrences 

An addition of some interaction a /  r in (2.1) would lead to a non-zero energy E = -2a/ k 
in (2.3). This will be analysed in paper I1 of the present series. We see that (2.2) 
represents just a formal Coulomb-oscillator equivalence (Newton 1982). Hence, in 
terms of the complete set of the harmonic oscillator states In), we may also expand 
the bound states here: 

Our knowledge of the matrix elements 

( n  lx21 n )  = an (n lx2 in  + 1) = b, 

as simple functions of the indices m = n f k :  

a ,  = 2 n [ l + ( a + k ) n - ’ ]  

b, = n [ l + ( l + k ) n - 1 ] 1 ” [ 1 + ( 2 a i k ) n - ’ ] ’ ’ 2  (2.5) 

n , k = 0 , 1 ,  . . .  

a = f ( L + $ ) =  1 , 2 , .  . . 

is important. It enables us to rewrite (2.4) easily in the form ( 1 . 5 )  
2 

1 Ann+mPn+m = 0 , = -2 

where t = 2, cp-, = c p - 2  = 0 and  

Ann-> = bn-2bn-Ian-[ Ann+2=bnbn+lan+l 

A,,,,’ = b , , - ; * ; ( ~ i * ~  + a : T 2 ~  -;A) 

A,, = a: + an- l  b t - ,  + a n + l b i  + v2an -$ha ,  

(2.7) 

n = 0, 1 , .  . . . 
For sufficiently large indices n >> 1 ,  both the functions (2.5) and matrix elements in 

(2.6) may be interpreted as Taylor series in the variable l /n.  This may be employed 
in converting the difference equation (2.6) into its approximate asymptotic form 

By means of the related tedious but straightforward algebraic manipulations, we may 
evaluate the separate coefficients: 

X I ,  = 3a + i m  
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(8-31ml)a2+a 
X2m = + &n2 + f + 3ma 

3 - I ~ I  

(2.9) 

+ & , , , ~ 2 + 2 a m  - - $ M E  -QA] 
etc ( m  = -2, -1, 0, 1, 2 and 8,,= 1, S m O = O  for m ZO). 

3. Algebraic solution of the difference Schriidinger equation 

In accord with the standard textbooks on difference equations (we have used Norlund 
(1923)) a general solution of (2.6) at large n is a superposition of the four independent 
solutions 

(3.1) ( 0  
(Pn =g,cptl +g2cpjlz’+g,cpj13’+g4cpIp’. 

A construction of the dominant terms is quite straightforward (cf, e.g., Znojil 1986, 
Hautot 1986) and, in the present t = 2 case, it may be expected to acquire the form 

(P , ,=(P! , ‘ )=( - I )~  e ~ p ( a n ~ ’ ~ + b n ~ ’ ~ + . .  , )  (3.2) 

analogous to the quartic oscillator case (Znojil et a1 1985). In (2.8), equation (3.2) 
will simply be used as an ansatz. 

In general, the superposition (3.1) will violate our requirement 

cp-, = cp-2 = 0 (3.3) 

i.e. the ‘physical boundary conditions in the origin’. Moreover, it may also become 
incompatible with the normalisation condition 

Vice versa, equations (3.3) and (3.4) should fix the physical wavefunction (3.1) uniquely. 
In a constructive proof of this statement, let us fix the index n and re-normalise 

(Pnrk  + 9,*k(- l )n+k. Then, due to the smooth asymptotic behaviour of the projections 
cpn, we may employ and truncate the Taylor series 

(Pn+k k 2  
(Pn 2!  
-- - 1 * kR, +- R, * . . 

When we compare (3.1) with (3.5), we may also write 

(3.5) 

(3.6) = n - ~ / 4  
d 

Q1=-lncpn=$ap+ibp2+ . . .=  d1) mP 
dn m = l  
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Now, step by step, the coefficients are to be determined algebraically from the 
asymptotic form (2.8) of our Schrodinger equation (2.6). 

We may notice that 

d p S d  
dn 4 d p  
_-  -- - - 

so that the recurrences 

i.e. 

in 

ni = k 

determine the expansion (3.5) as a power series in the new variable p, with n k  = O ( p k )  
for p<< 1. In  this way, we may insert (3.5) in (2.8) and, comparing the coefficients at 
each power of the variable p, obtain the identity 

opO+op’ + o p 2 +  op3+ n4+ o(p5) = 0. (3.9) 

This is a surprising conclusion-we have to put c:’) = 0. As a consequence, nk = O(p”) ) .  
This is an important simplification of the formulae when compared with the 

anharmonic oscillator case. 
Due to the above result, an ordering of terms nk as belonging to the pZA contributions 

to the left-hand side of our equation (2 .8)  must be performed. Thus, in place of (3.9), 
we obtain a new simplified relation: 

6R3 ~ E C ?  
opO+op2+op4+op6+ 

(3.10) 

where also the higher-order corrections may be added in the same manner. Again, 
due to the independence of the different powers of the variable p, the separate 
coefficients must be assigned the zero values. 

From the lowest non-trivial O(px)  contribution to the left-hand side of the equation 
(3.10), we obtain the requirement 

[ c;]‘4’ + 7 2  = 0. (3.11) 

It defines the dominant component of ip,, and the ansatz (3.6) proves compatible with 
our recurrences. All the four general solutions are generated by the formula (3.11)-we 
may eliminate the two unphysical (non-normalisable) components and write 

c \ ” =  (77/2)”2(-1+in) u = * l .  (3.12) 

A choice of these two roots of (3.11) as coefficients in (3.6) makes our ansatz (3.2) 
compatible with the asymptotic boundary conditions (3.4). Any superposition of the 
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corresponding two wavefunctions q, = cp‘,“’ will therefore define the Jost solution, in 
full analogy with the FPPT anharmonic oscillator construction of Znojil et a1 (1985). 

til) = 0 ci”= -t+fi(c:l))2= -:+fa. (3.13) 

As a consequence, we may write the Jost solutions as superpositions of the components 

(3.14) 

From the next O(pIo) component of (3.10), we obtain 

= (-1)n exp[ -(2n77)1’2]n(-3+2u)’4[cos(2nr1)1/2 + i u  s i n ( 2 n ~  )1’2]fr’ 
where, asymptotically, f ( R ’  = 1 + O( l/&) for n >> 1. 

An analysis of the higher-order corrections 

(3.15) 

may proceed in precisely the same manner. Their derivation as well as the explicit 
formulae 

and 

A io- 
77 1617 

$ 1  = a(: - f a )  +T ( a  - 5 )  + - (2a - $+ L2+ L - 2) 

(3.16) 

(3.17) 

etc, become more and more involved. Presumably, a symbolic manipulation language 
like REDUCE should be employed. 

4. A variable model space and binding energies 

Methodically, our example (2.4) is a substitute for some ‘realistic’ (say, nuclear) 
eigenvalue problem. There, in contrast to the simple examples, the variational approxi- 
mation Heff = H converges slowly with the increasing dimension of the model space 
or, vice versa, we have to choose a small dim He‘ here. The (perturbatively) improved 
Heff # H becomes needed. 

With a limited number of rows, say, n S M - t 2 1, our basic difference equation 
(2.6) involves merely the first M + 1 components cpo, cp,, . . . , qM of the wavefunction 
and vice versa, the Feshbach ( M  + 1)-dimensional relation 

M 

C A%Qm=O n = 0,1, . . . , M 
m=O 

(4.1) 

and eigenvalue condition 

det Aeff = 0 (4.2) 
specify our solution as a function of the four unknown matrix elements 

M - I M - I  A$-,, h h (AJiM-l AZM ) = ( h i  h:) 

since A:” = Am, for m < M - 1 or n < M - 1. 

(4.3) 
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In the present example, we may a priori expect that, up to the O(p*)  corrections, 
our matrix (4.3) remains Hermitian, real and symmetric, 

h ,  = h m o + h , r p 2 + h m 2 p 4 + O ( p 6 )  

m = 1 , 2 , 3  h ,  = h*, +O(p8) .  
(4.4) 

The higher-order corrections, tractable along the same lines in principle, will necessitate 
an introduction of the complex quantities. In the present approximation, the simplified 
requirement of compatibility of (4.4), (4.3) and (4.1) may be postulated. 

Provided that p (i.e. the model space dimension M )  represents an independently 
variable quantity, we may treat (4.4) as an ansatz. After its insertion in (4.1), we obtain 
the relations 

(1  + 3 a /  n ) (  - 1 + R I  -fa,) + 4[ 1 + ( 3 a  + $)/ n ]  

+ h , (  -1 -a, -&,) + h2( 1 + 2 R l  + 2R2)  = O(p6)  

[ 1 + ( 3 a  + 3 ) /  n ]  + h2( - 1 - a, - $0,) + h3( 1 + 2a, + 2a2) = O ( p 6 )  

where 

(4.5) 

In the leading-order approximation, the set of equations (4.5) (on the O(1) level 
of precision) is incomplete for a determination of the leading order part of (4.4). Thus, 
an inclusion of the O ( p 2 )  relations is needed to provide the values 

h l o = 5  hzo = 2 h,, = 1. (4.7) 

h l l  = h21 = h31 (4.8) 

h , ,  =(27)"*>0.  (4.9) 

Similarly, a partial O(p2)  result 

may be combined with the O(p4) requirements and gives the first non-trivial contribution 

An analogous generation of the higher-order contributions to the infinite asymptotic 
fixed-point series representation of A'' may be continued, presumably by means of 
the symbolic manipulation algorithm on a computer. The preliminary second-order 
constraints 

h , ,  - h22 = 9 a  + 6 - 
h22- h32 =3CY + 3 -  7 

follow already from the present O(p4) restriction. 

5. Conclusions 

(4.10) 

The present algebraic expansion of the particular finite-dimensional (Feshbach- 
projected) Schrodinger equation (4.1) is to be understood, first of all, as an illustration 
of feasibility of the FPFT constructions. The formalism has several consequences. Its 
character of an asymptotic series with the small parameter 1/ McanStant may prove useful 
not only in an acceleration of convergence of the M + CO limiting transition, but also, 
at a fixed M, as an approximation including systematically the higher-order corrections. 
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With our particular choice of the interaction (a shallow well) there is no need to 
produce the numerical results-almost any method will converge here. At the same 
time, the non-numerical results (the four asymptotic solutions, a pair of their physical, 
normalisable subclass) enable one to notice the phenomena not always recovered by 
the numerical means (e.g. a subdominant suppression of the U = - 1  Jost solutions (not 
observed in the anharmonic oscillator (1.4))), or the asymptotic degeneracy of the 
physical and unphysical effective Hamiltonians (cf (4.7)). 

An application of the present method to a large variety of more complicated 
potentials will be studied in the forthcoming paper 11. Here, the preliminary results 
also deserve a few remarks. 

(i) We may recall that, in spite of the standard regularity condition I > -f (Newton 
1982), a number of interactions may formally be considered at 1 = -1 as well. This 
enables one to switch to the one-dimensional analogue of the given potential. Here, 
a similar switch is not allowed, unfortunately. Indeed, due to a change of the scalar 
product, the restriction 1 > -f becomes essential in the transformation (2.2). 

(ii) From another point of view, the change of variables (2.2) pushes the one- 
dimensional ground state + out of the standard Hilbert space. Our harmonic oscillator 
basis In) (in fact, the so-called Sturmians, cf, e.g., Whitehead et a1 (1982) for more 
details) necessitates a modification before being used in a one-dimensional counterpart 
of our three-dimensional bound-state problem (2.1). 

In full analogy with the preceding results concerning the simple potentials (1 .3)  
and (1.4), we might emphasise in the conclusion that the present approach to the 
band-matrix Schrodinger equations treated as difference equations exhibits a striking 
analogy with the standard matching method applied currently to the ordinary diff eren- 
tial equations. We may expect also that the discrete analogues of the regular and Jost 
solutions will soon find applications in the various problems of an immediate physical 
interest. 
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